Experiences Embedding FDD into Residential and Light Commercial Products

Jon Douglas, Manager Applied Research
Lennox Industries
6/21/2013
Agenda

- Market Survey of FDD
- Answer why a gap exists between products and literature
- Case study illustrating the challenges commercializing a new diagnostic feature
- Recommendations
Fault Detection

- Vapor Compression Cycle
 - High pressure cutout (Safety requirement)
 - Low pressure cutout (Warranty benefit)
 - Coil Freeze stats
 - Discharge thermostat

- Fans
 - Blower proving switch

- Gas furnaces
 - Sophisticated controls driven by safety requirements
 - Most inputs digital

- Generate numerous fault codes.
 - Commercial – over 150 error codes
 - Residential – over 100 error codes

- Error codes typically do not point directly to root cause.
Virtual Sensors

- Indoor Airflow
 - Airflow measurement using BLDC (ECM) motors
 - Motor drive knows speed and power
 - Apply to fan curves to calculate airflow
 - Residential
 - Many units have constant airflow control
 - Dirty filter detection, duct static
 - Error codes associated with excessive fan power
- Commercial applications <5tons
- **Compressor** –
 - Sense compressor current and control signals
 - Aimed at reducing the number of misdiagnosed compressor failures

- **Refrigerant Charge**
 - Subcooling based charging tool
 - Only used during charging

- **Expansion Device**
 - Diagnostics embedded with EEV control
 - Sensor failure
 - Stuck valve
 - High superheat
Economizer FDD Features

- California Title 24 Requirements (Jan 2014)
 - Air temperature sensor fault
 - Not economizing when it should
 - Economizing when it should not
 - Damper not modulating
 - Excess outdoor air

- Several offerings announced
 - Many more to follow
Summary of FDD in Embedded Systems

- Complete vapor compression cycle diagnostics
- Continuous Refrigerant Charge Diagnostics
- CA Title 24 Regulation
- Increasing Volume
- Incremental Cost
#1 Challenge: Business Case

Customer Benefits
- Dealer Installer Service
- Owner Occupant Energy MGR

Product Cost
- Component Cost
- Development Cost
 - Engineering time
 - Lab Facilities

Many Projects Competing for Limited Resources
Example: Economizer Diagnostics

- **Features**
 - Air temperature sensor fault
 - Not economizing when it should
 - Economizing when it should not
 - Damper not modulating
 - Excess outdoor air

- **Customer Benefits**
 - Reduced commissioning time
 - Energy savings
 - Reduced over ventilation
 - Maximize economizer use
 - Improved IAQ
 - Prevent under ventilation
Challenges Quantifying Energy Savings

- Savings vary based on the following
 - Climate
 - Equipment sizing / building type
 - Probability of a failure
 - Part failure
 - Commissioning error
 - Data makes someone look bad

- Requires Statistical Analysis
 - Use Monte Carlo analysis
 - Results difficult to understand

- Difficult to relate IAQ to energy
 - Under ventilation saves energy
Example: Ventilation Error when not calibrating

<table>
<thead>
<tr>
<th>Actual Ventilation Rate (CFM)</th>
<th>Desired Ventilation Rate (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESIGN A</td>
</tr>
<tr>
<td></td>
<td>DESIGN B</td>
</tr>
</tbody>
</table>

Ventilation ERROR when Using Percent Open = Percent OD air

- Average Error +86 CFM
- Average Error -71
Additional Commercialization Challenges

- **Integration into sales tools**
 - Simple simulation to calculate annual energy consumption
 - Tools assume perfectly running units
 - Can’t subtract savings from annual energy consumption

- **Typically sold using anecdotes**
 - Unit in Chicago, economizer fails open in June costing $$

- **Field service desires consistent feature set**
 - Want all units to have same FDD
 - Impractical to roll out features on all units at once.
Steps to Improve Commercialization

- Generate confidence in FDD
 - Ratings or evaluation process as good as SEER
 - SPC 207 is a good start

- Relate FDD to energy savings
 - Good: Industry accepted procedure
 - What is the probability of a fault occurring
 - What is the probability of detection with and without FDD
 - Need simple tools
 - Ideal: Refrigerant charge diagnostics = +1 SEER

- Associate FDD with installation savings
 - Reduced inspections if FDD enabled
 - Studies verifying reduced call backs
Thank you

Any Questions?

jon.douglas@lennoxind.com